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Growing production of and 
accessibility to data has 

allowed for PdM to flourish

Emerging SHM techniques have 
potential for structural 

integrity insights on aircraft. 

Integrating ML approaches 
with SHM improves with 

several aspects of the latter. 
Detecting, localising, and 

classifying damage in aircraft 
components

Advantages of using ML, 
limitations w.r.t to EASA and 

SAE guidelines.

Focus is centred on damage 
progression applications

Considerations 2023
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How will PdM and SHM be transformed with ML

What will their roles be, how will they change

Will the operational efficiency of the aviation industry be boosted? How critical are their roles in doing this? 2023
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The Emergence of PdM in the Commercial Air Transport Sector
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PdM: CBM + Prognostics

Condition-based maintenance 
(CBM): diagnostics focused.

Condition monitoring: 
exceedance monitoring from 
sensors

Predictive maintenance (PdM): 
synonymous with PHM in asset 
management.



© Cranfield University7 © Cranfield University7

Benefits of PdM Adoption

LHT AVIATAR helps 

avoid up to 30% of 

unscheduled removals

AFI KLM E&M 
PROGNOS for CFM56 
prognostics enables 

proactive maintenance 
planning

45% of operational 

aircraft fleets to be 
enabled by 2025

$3 billion in 

maintenance savings 
when implementing 

data-driven PdM

Avert unplanned 
ground-time for 
enabled fleets
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Challenges in PdM Adoption

• Predictive algorithms require a plethora of data.

• Data sharing between operators and third-party MROs is not a common occurrence.

• ML offers a solution through a federated learning environment:

• Control over access and revocation throughout the ML process 

• Privacy and data governance issued addressed

• Large-scale, cross party validation

• Research on rare events where individual parties have insufficient data

• Algorithm viability requirements: 

• Model performance should surpass local training architectures

2023
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SHM Systems and their Relevance to Aircraft Maintenance 2023
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Basics and Challenges in SHM

• Optimised selection and placement of SHM sensors still not economically viable to this date.

• Large-scale SHM system validation on real-life aircraft structures is missing.

• Optimisation of sensor configurations, reduction of sensors via data-driven approaches.

• Diagnostics involves answering:

• Not all damage may be measured by sensors directly

Is there 
damage?

Where is it 
located?

To what 
extent has 

the damage 
propagated?

What is the 
type of 

damage?

How severe 
is it w.r.t the 
defined safe 

operating 
limits?

Relevant damage 
information

Sensor data
Feature extraction through signal processing + statistical 

classification 

2023



© Cranfield University11 © Cranfield University11

Structural Health Monitoring and Machine Learning
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Approaches to SHM – Data-driven Models
Operational 
evaluation

Data 
acquisition

Feature 
selection

Statistical 
modelling for 

feature 
discrimination

Model-based Knowledge-based Multi-model based Data-driven 
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ML in Data-driven SHM

Scenarios in which data-driven models are 
preferred/necessary:

• Limited knowledge of the component’s physics.

• SHM sensor placement.

• Pattern recognition.

Statistical 
modelling for 

feature 
discrimination

Type of damage?

2
0
2
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ML in Data-driven SHM

Scenarios in which data-driven models are 
preferred/necessary:

• Limited knowledge of the component’s physics.

• SHM sensor placement.

• Pattern recognition.

Statistical 
modelling for 

feature 
discrimination

Type of damage?

Labelled data

Supervised

Unsupervised

Semi-
supervised

• Accurate
• representative

• Set threshold
• Fault mode
• Outlier 

detection
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ML in SHM on Aircraft

SHM Application Data used ML Type

Aircraft wing CSK rivet hole 

damage profile [45]

Historical in-service damage readings at set load intervals Particle 

Filters

Joint damage localisation on a 

physics-based composite wing 

through fasteners [46]

Image-based strain distribution output of a FEM skin-rib 

joint aircraft wing
CNN

Fatigue Crack Growth prediction 

in rotorcraft structures [48]

Ultrasonic sensor readings, experimental crack growth 

data from fatigue tests of rotorcraft structures, Paris–

Erdogan physical damage models

Particle 

Filters

[45] W. B. Yousuf, T. Khan, and T. Ali, ‘Prognostic Algorithms for Flaw Growth Prediction in an Aircraft Wing’, IEEE Trans. Reliab., vol. 66, no. 2, pp. 478–486, Jun. 2017, doi: 10.1109/TR.2017.2676722.
[46] M. Lin, S. Guo, S. He, W. Li, and D. Yang, ‘Structure health monitoring of a composite wing based on flight load and strain data using deep learning method’, Compos. Struct., vol. 286, p. 115305, 
Apr. 2022, doi: 10.1016/j.compstruct.2022.115305.
[48] M. A. Haile, J. C. Riddick, and A. H. Assefa, ‘Robust Particle Filters for Fatigue Crack Growth Estimation in Rotorcraft Structures’, IEEE Trans. Reliab., vol. 65, no. 3, pp. 1438–1448, Sep. 2016, doi: 
10.1109/TR.2016.2590258.
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Evolving regulatory landscape for ML in Aircraft Systems

• ML techniques in SHM show promise for aircraft maintenance and reliability.

• Implementation of ML in aircraft systems must comply with regulatory standards like EASA and SAE G-34.

• SAE G-34 AI in Aviation Committee and EUROCAE are developing standards for safe and accountable AI use in 
aviation.

• EASA is focusing on guidelines for ML deployment, emphasizing robustness, reliability, explainability, and 
continuous monitoring.

• Supervised learning in ML should be thoroughly tested and validated as per EASA mandates.

• Acquisition of representative labelled training data for possible failure scenarios is a challenge.

• Unsupervised learning shows potential for damage detection without explicit damage examples.

• The lack of human interpretability in unsupervised learning could be a limitation, as per EASA's stipulations.

• Development of techniques to enhance interpretability of unsupervised learning methods is a challenge.

• EASA and SAE G-34 emphasize the importance of robustness to environmental changes in aviation systems.

• ML techniques in SHM need to account for impacts of external influences on sensor data.

• Regular revalidation and recalibration of ML algorithms are necessary to maintain performance and reliability.

• The standards push for continuous learning strategies within SHM systems.
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Avionics airworthiness requirements

• ARP4754A

• ARP4761

• DO-178C

• DO-254

The status of ML certification in aviation

AI in aviation certification advisories

• AIR6988

• EASA L1 

• AMLAS

SAG G-34/EUROCAE WG-114 & EASA 
MILESTONE ROADMAP Phase I: exploration 
and first guidance development 2019-2024
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